top of page

Publications

Our research focuses on advancing sustainable solutions at the intersection of water, energy, and food systems in a changing climate. Our work centers on four key areas:

  • Water sustainability: Assessing global water scarcity and sustainable irrigation strategies to adapt agriculture to climate change.

  • Sustainable agriculture and food systems: Identifying pathways to net-zero emissions in agriculture, with attention to nitrogen management, farm-scale trade-offs, and global food security.

  • Techno-economic and life cycle analysis of low carbon fuels: Evaluating the environmental and techno-economic viability of low-carbon fuels such as ammonia, hydrogen, biomethane, and methanol.

  • Sustainable and resilient industrial decarbonization: Evaluating carbon mitigation strategies within water, land, and emissions constraints.

For a complete list of publications, please visit Google Scholar

Water sustainability 

Water scarcity and solutions for resilient and sustainable agricultural water management 

  1. Rosa L and He L. Global multi-model projections of green water scarcity risks in rainfed agriculture under 1.5°C and 3°C warming (2025). Agricultural Water Management. https://doi.org/10.1016/j.agwat.2025.109519

  2. Khan M, Sangiorgio M, Rosa L. Potential of wastewater to alleviate water scarcity under warming scenarios (2025). Environmental Research Letters. https://doi.org/10.1088/1748-9326/adb31d

  3. Rosa L and Sangiorgio M. Global water gaps under future warming levels (2025). Nature Communications. https://doi.org/10.1038/s41467-025-56517-2

  4. Ren C, He L, Rosa L. Integrated irrigation and nitrogen optimization is a resource-efficient adaptation strategy for US maize and soybean production (2025). Nature Food. https://doi.org/10.1038/s43016-024-01107-6

  5. Rosa L, Ragettli S, Sinha R, Zhovtonog O, Yu W, Karimi P. Regional irrigation expansion can support climate resilient crop production in post-invasion Ukraine (2024). Nature Food. https://doi.org/10.1038/s43016-024-01017-7

  6. Schmitt R and Rosa L. Dams for Hydropower and Irrigation: Trends, Challenges, and Alternatives for Climate Mitigation and Adaptation (2024). Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2024.114439 

  7. He L and Rosa L. Solutions to agricultural green water scarcity under climate change (2023). PNAS Nexus. https://doi.org/10.1093/pnasnexus/pgad11

  8. Schmitt R, Rosa L, Daily G. Global expansion of sustainable irrigation limited by water storage (2022). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2214291119

  9. Rosa L. Adapting agriculture to climate change with sustainable irrigation: Biophysical potentials and feedback (2022). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac7408 

  10. Chiarelli DD, Passera C, Rosa L, Davis KF, D’Odorico P, Rulli MC. The green and blue crop water requirement WATNEEDS model and its global gridded outputs (2020). Scientific Data. https://doi.org/10.1038/s41597-020-00612-0

  11. Rosa L, Chiarelli DD, Sangiorgio M, Beltran-Pena A, Rulli MC, D'Odorico P, Fung I. Potential for sustainable irrigation expansion in a 3C warmer climate (2020). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.201779611

  12. D’Odorico P, Chiarelli DD, Rosa L, Bini A, Zilberman D, Rulli MC. The global value of water in agriculture (2020). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.200583511

  13. Borsato E, Rosa L, Marinello F, Tarolli P, D’Odorico P. Weak and strong sustainability of irrigation: A framework for irrigation practices under limited water availability (2020). Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2020.00017

  14. Rosa L, Chiarelli DD, Rulli MC, Dell’Angelo J, D'Odorico P. Global agricultural economic water scarcity (2020). Science Advances. https://doi.org/10.1126/sciadv.aaz6031

  15. Rosa L, Rulli MC, Davis KF, Chiarelli DD, Passera C, D'Odorico P. Closing the yield gap while ensuring water sustainability (2018). Environmental Research Letters. https://doi.org/10.1088/1748-9326/aadeef

Virtual water trade and global hydrology

  1. Zhao G, Gao H, Li Y, Tang Q, Woolway L, Merder J, Rosa L, Michalak A. Decoupling of surface water storage from precipitation in global drylands due to anthropogenic activity (2025). Nature Water. https://doi.org/10.1038/s44221-024-00367-7

  2. Mekonnen M, Kebede M, Demeke B, Carr J, Chapagain A, Dalin C, Debaere P, D’Odorico P, Marston L, Ray C, Rosa L, Zhuo L. Trends and environmental impacts of virtual water trade (2024). Nature Reviews Earth Environment. https://doi.org/10.1038/s43017-024-00605-2

  3. D'Odorico P, Carr J, Dalin C, Dell’Angelo J, Konar M, Laio F, Ridolfi L, Rosa L, Suweis S, Tamea S, Tuninetti M. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts (2019). Environmental Research Letters. https://doi.org/0.1088/1748-9326/ab05f4

  4. Rosa L, Chiarelli DD, Tu C, Rulli MC, D'Odorico P. Global unsustainable virtual water flows in agricultural trade (2019). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab4bfc

Sustainable agriculture and food systems

 

Strategies for achieving net-zero emissions in agriculture

  1. Zhang X, Sabo R, Rosa L, Niazi H, Kyle P, Byun JS, Wang Y, Yan X, Gu B, Davidson E (2024). Nitrogen management during decarbonization (2024). Nature Reviews Earth & Environment. https://doi.org/10.1038/s43017-024-00586-2

  2. Qin J, Duan W, Zou S, Chen Y, Huang W, Rosa L. Global energy use and carbon emissions from irrigated agriculture (2024). Nature Communications. https://doi.org/10.1038/s41467-024-47383-5 

  3. Rosa L and Gabrielli P. Achieving net-zero emissions in agriculture: A review (2023). Environmental Research Letters. https://doi.org/10.1088/1748-9326/acd5e8

  4. Rosa L and Gabrielli P. Energy and food security implication of transitioning fertilizers to net-zero emissions (2022). Environmental Research Letters. https://doi.org/10.1088/1748-9326/aca815

  5. Rosa L, Rulli MC, Ali S, Chiarelli DD, Dell’Angelo J, Mueller N, Scheidel A, Siciliano G, D’Odorico P. Energy implications of the 21st century agrarian transition (2021). Nature Communications. https://doi.org/10.1038/s41467-021-22581-7

Systems approaches to sustainable agriculture and food security

  1. Ren C, He L, Ma Y, Reis S, van Grinsven H, Lam S, Rosa L. Trade-offs in agricultural outcomes across farm sizes (2024). Earth Critical Zone. https://doi.org/10.1016/j.ecz.2024.100007

  2. Zhang X, Yao G, Vishwakarma S, Dalin C, Komarek A, Kanter DR, Davis KF, Pfeifer K, Zhao J, Zou T, D'Odorico P, Folberth C, Galeana Rodriguez F, Fanzo J, Rosa L, Dennison W, Musumba M, Heyman A, Davidson E. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations (2021). One Earth. https://doi.org/10.1016/j.oneear.2021.08.015

  3. Müller M, Penny G, Niles M, Ricciardi V, Chiarelli DD, Davis KF, Dell’Angelo J, D’Odorico P, Rosa L, Rulli MC, Mueller N. Impact of transnational land acquisitions on local food security and dietary diversity (2021). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.202053511

  4. Beltran-Pena A, Rosa L, D’Odorico P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture (2020). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab9388

  5. D'Odorico P, Davis KF, Rosa L, Carr J, Chiarelli DD, Dell'Angelo J, Gephart J, MacDonald G, Seekel D, Suweis S, Rulli MC. The global Food-Energy-Water Nexus (2018). Reviews of Geophysics. https://doi.org/10.1029/2017RG000591

Techno-economic and life cycle analysis of low-carbon fuels

Low-carbon ammonia for resilient food and energy transitions

  1. Mingolla S and Rosa L. Low-carbon ammonia fertilizers are essential for resilient and sustainable agriculture (2025). Nature Food. https://doi.org/10.1038/s43016-025-01125-y

  2. Schueler Y, Mingolla S, Boness N, Rosa L. How are decarbonization policies in the US and Canada shaping low-carbon ammonia production strategies? (2024). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad858c

  3. Tonelli D, Rosa L, Gabrielli P, Parente A, Contino F. Cost-competitive decentralized ammonia fertilizers production can increase food security (2024). Nature Food. https://doi.org/10.1038/s43016-024-00979-y

Carbon dioxide removal and resource recovery technologies

  1. Marconi P and Rosa L. Global potential nitrogen recovery from anaerobic digestion of agricultural residues (2024). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad428e  

  2. Feng Y and Rosa L. Global biomethane and carbon dioxide removal potential through anaerobic digestion of waste biomass (2024). Environmental Research Letters. https://doi.org/10.1088/1748-9326/ad1e81  

  3. Marconi P and Rosa L. Role of biomethane to offset fossil natural gas (2023). Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2023.113697 

  4. Rosa L, Becattini V, Gabrielli P, Andreotti A, Mazzotti M. Carbon dioxide mineralization in recycled concrete aggregates can contribute immediately to carbon-neutrality (2022). Resources, Conservation & Recycling. https://doi.org/10.1016/j.resconrec.2022.106436 

  5. Rosa L and Mazzotti M. Potential for hydrogen production from sustainable biomass with carbon capture and storage (2022). Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2022.112123

  6. Terlouw T, Bauer C, Rosa L, Mazzotti M. Life cycle assessment of carbon dioxide removal technologies: A critical review (2021). Energy & Environmental Science. https://doi.org/10.1039/D0EE03757E

  7. Rosa L, Sanchez D, Mazzotti M. Assessment of carbon dioxide removal potential via BECCS in a carbon neutral Europe (2021). Energy & Environmental Science. https://doi.org/10.1039/D1EE00642H

Sustainable and resilient industrial decarbonization

 

Net-zero chemical and hydrogen systems under resource constraints

  1. Terlouw T, Rosa L, Bauer C, McKenna R. Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch (2024). Nature Communications. https://doi.org/10.1038/s41467-024-51251-7

  2. Gabrielli P, Goericke H, Rosa L. Optimal combination of net-zero pathways for minimum energy, land, and water consumption in chemical production (2024). Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.4c01649

  3. Tonelli D, Rosa L, Gabrielli P, Caldeira K, Parente A, Contino F. Global land and water limits to electrolytic hydrogen production using wind and solar resource (2023). Nature Communications. https://doi.org/10.1038/s41467-023-41107-x 

  4. Gabrielli P, Rosa L, Gazzani M, Meys R, Bardow A, Mazzotti M, Sansavini G. Net-zero emissions chemical industry in a world of limited resources (2023). One Earth. https://doi.org/10.1016/j.oneear.2023.05.006

 

Water requirements and scarcity implications of carbon dioxide removal technologies 

  1. Rosa L, Sanchez D, Realmonte G, Baldocchi D, D’Odorico P. The water footprint of carbon capture and storage technologies (2021). Renewable & Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2020.110511

  2. Rosa L, Reimer J., Went M., D'Odorico P. Hydrological limits to carbon capture and storage (2020). Nature Sustainability. https://doi.org/10.1038/s41893-020-0532-7

Water requirements and scarcity implications of unconventional oil and gas extraction

  1. Rosa L and D'Odorico P. The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina (2018). Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2018.10.039

  2. Rosa L, Davis KF, Rulli MC, D'Odorico P. The Water-energy nexus of hydraulic fracturing: A global hydrologic analysis for shale oil and gas extraction (2018). Earth's Future. https://doi.org/10.1002/2018EF000809

  3. Rosa L, Davis KF, Rulli MC, D'Odorico P. Environmental consequences of oil production from oil sands (2017). Earth's Future. https://doi.org/10.1002/2016EF000484

bottom of page